Heterogeneous Bunsen Reaction Analysis & Experimental study of Chemical absorption of Sulfur dioxide and dissolution of Iodine into aqueous reacting system

C. S. R. Prasad, H. Z. Fani, S. B. Menon

Chemical Technology Division, ChTG Bhabha Atomic Research Centre, Trombay Mumbai – 400 085, India

Thermo Chemical Process for H₂ Production

Iodine-Sulfur (I-S) Process – Reaction Scheme

Heterogeneous Bunsen Reaction is the focus of this study

Objective is to derive crucial engineering information

- A. Overall reaction rate
- B. Reaction regimes
- C. Controlling kinetic/mass transfer resistances
- D. Coefficients
- E. Enhancement factor

This information helps in chemical reactor selection, flow/contacting scheme choice and design

Region of experimental study

Absorption limit of SO₂ by the Bunsen reaction vs. the initial iodine fraction in the absorbent Ref: KAORU ONUKI, et at., IS Process For thermo chemical Hydrogen Production JAERI - Review 94 – 006

Sketch of experimental setup

Bunsen reaction

stoichiometric : $SO_2 + I_2 + 2H_2O \longrightarrow 2HI + H_2SO_4$

with excess of $I_2 \& H_2O$: $SO_2 + xI_2 + y H_2O \longrightarrow 2HI + H_2SO_4 + (x-1) I_2 + (y-2) H_2O$

is represented as follows for analysis

 SO_2 , A + I₂, B + H₂O, Aq \longrightarrow (H₂SO₄ +HI), Products

B(s) B(aq)

 $A(aq) + zB(aq) \longrightarrow Products$

This multiphase process involving mass transfer and chemical reaction has following steps

- 1) Diffusion of SO₂ (species A) through gas film
- 2) Dissolution of Iodine (species B)
- Diffusion and simultaneous chemical reaction in the liquid film

Concentration profiles based on film theory for gas (sulphur dioxide) – liquid (water) – solid (lodine) system

Gas phase mass transfer rate is given by,

$$-r_A = k_g a(p_{Ag} - p_{Ai})$$

Rate of iodine dissolution is given by,

$$-r_{B}=k_{s}a_{p}(c_{Bs}-c_{Bl})$$

Liquid phase reaction rate is given by,

$$-r_A = k_1 c_A = \frac{-r_B}{z}$$

The overall rate of reaction is given by,

$$-r_{A} = \frac{p_{Ag}}{\left(\frac{1}{k_{g}a} + \frac{H}{k_{l}aE} + \frac{H}{k_{1}(1-\varepsilon)}\right)}$$

Gas film Liquid film kinetic resistance resistance resistance

Mass balances for the diffusing gas A and dissolving solid species B in the liquid film are as follows:

$$D_A \frac{d^2 c_A}{dx^2} = k_1 c_A \qquad \qquad D_B \frac{d^2 c_B}{dx^2} = z k_1 c_A$$

Reactor model schematic for analysis

At any instant c_B is same everywhere in the tank. However c_B decreases with time because of reaction with A (Yet much more than stoichiometric requirement during most of the batch time).

At the start $c_B = c_{Bo}$ At the end $c_B = c_{Bf}$

Mixed gas and completely mixed liquid.

E=Liquid film enhancement factor

Rate of uptake of A with chemical reaction
Rate of uptake of A for straight mass transfer

Enhancement factor for infinitely fast reaction is,

$$E_i = 1 + \frac{D_B c_B H}{z D_A p_{Ai}}$$

Hatta no is,

Henry's Law const is,

$$H_a = \frac{\sqrt{k_1 D_A}}{k_l} \qquad \qquad H = \frac{p_A}{c_A}$$

By overall mass balance across the reactor,

$$G_{C}\left[\frac{p_{Ain}}{P - p_{Ain}} - \frac{p_{Aout}}{P - p_{Aout}}\right] = (-r_{A})V_{r}$$

Where,
$$V_r = \frac{V_l}{(1 - \varepsilon)}$$
 and

Batch time for the conversion of lodine is calculated by,

$$t = \int_{c_{Bf}}^{c_{Bo}} \frac{(1-\varepsilon)dc_B}{-r_A z}$$

SO₂ absorption rate vs. SO₂ partial pressure for different lodine loading

Batch time calculated vs. Batch time experimental

Typical parameters and values for Bunsen Reaction analysis

Batch time (calculated) (min)	t _{calc}	34
Batch time (experimental) (min)	t _{exp}	30
Gas film resistance (Pa m ³ s/kmol)	$1/(k_g a)$	1.1x10 ⁶
Liquid film resistance (Pa m ³ s/kmol)	H/(k _l aE)	1.0x10 ⁷
Liquid bulk resistance (Pa m ³ s/kmol)	$H/(k_1(1-\varepsilon))$	7.5x10 ²
Hatta no	Ha	3.4
Enhancement factor (calculated)	E	2.1
Enhancement factor (experimental)	E	2.2
Solid dissolution parameter	$(k_s a_p D_A^2)/(4k_l D_B)$	1.6x10 ⁻⁶

Conclusions

- SO₂ absorption rate in chemically reacting system of Bunsen Reaction is experimentally studied and found to be a linear function of partial pressure (0-100 kpa) of SO₂ in inlet gas stream at atmospheric pressure. This functional relation is expected to hold good even under prototypical conditions of Bunsen Reaction
- 2) Multiphase Bunsen Reaction can be viewed as 'Fast pseudo first order' due to high concentration/rate of dissolution of lodine and reaction zone is located in Liquid film near Gas-Liquid interface
- 3) Liquid film resistance constitutes ~90% of overall resistance
- Experimental and theoretical results of this study indicated that this complex reacting system can be analyzed by invoking judicious simplifying assumptions for deriving practical engineering information
- 5) Rigorous model requires accurate thermodynamic, transport and physical properties
- 6) This study helps in selection/design of multiphase chemical reactor under prototypical conditions

Acknowledgements

- Authors are grateful to DAE, Government of India, Director BARC, Director ChTG for support and encouragement
- Help rendered by Head, Chemical Technology Division, Head, Chemistry Division, Head Chemical Engineering Division and colleagues in respective divisions is gratefully acknowledged
- All members of ChTG who worked very hard for this R&D are specially thanked
- Authors also express their thanks to IAEA and JAEA for the opportunity of participation in this conference

THANK YOU